
11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 1 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

Chapter 12 -- The Assembly Process

THE ASSEMBLY PROCESS

 -- a computer understands machine code
 -- people (and compilers) write assembly language

 assembly ----------------- machine
 source --> | assembler | --> code
 code -----------------

an assembler is a program -- a very deterministic program --
 it translates each instruction to its machine code.

 in the past, there was a one-to-one correspondence between
 assembly language instructions and machine language instructions.

 this is no longer the case. Assemblers are now-a-days made more
 powerful, and can "rework" code.

 The Pentium (being based on the 8086) has a one-to-one
 correspondence between assembly language instructions and
 machine language instructions.

ASSEMBLY

 the assembler's job is to
 1. assign addresses
 2. generate machine code

 an assembler will

 -- assign addresses

 -- generate machine code

 -- generate an image of what memory must look like for the
 program to be executed.

 a simple assembler will make 2 complete passes over the data
 (source code) to complete this task.
 pass 1: create complete SYMBOL TABLE
 generate machine code for instructions other than
 branches, jumps, call, lea, etc. (those instructions
 that rely on an address for their machine code).
 pass 2: complete machine code for instructions that didn't get
 finished in pass 1.

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 2 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

assembler starts at the top of the source code program,
and SCANS. It looks for
 -- directives (.data .code .stack .486, etc.)
 -- instructions

 IMPORTANT:
 there are separate memory spaces for data and instructions.
 the assembler allocates them IN SEQENTIAL ORDER as it scans
 through the source code program.

 the starting addresses are fixed -- ANY program will be assembled
 to have data and instructions that start at the same address.

Generating Machine Code for an Instruction
--

This is complex due to the large variety of addressing
modes combined with the large number of instructions.

Most often, the machine code for an instruction consists of
 1) an 8-bit opcode
 (the choice of opcode will depend somewhat on the addressing
 modes used for the operands)
 followed by
 2) one or more bytes describing the addressing modes for
 the operands.

EXAMPLE INSTRUCTION:
 add eax, 24

 Find Appendix C. That is where all this machine code
 stuff is specified.

 For the add instruction, the table lists:

 add reg, r/m 03 /r
 r/m, reg 01 /r
 r/m, immed 81 /0 id

 The only one that would match the operand types is the
 third one in the list:
 add r/m, immed 81 /0 id

 So, this is the one we choose.

 The 81 is the 8-bit opcode.

 What follows the opcode is information about the addressing
 mode of the 2 operands (add always has exactly 2 operands
 and the addressing mode of each must be explicitly specified)

 Commonly, both operands are described (exactly) by the
 encoding of a single byte that Intel calls the ModR/M byte.

 Within the machine code description (81 /0 id), the
 /0 symbol describes part of this ModR/M byte.
 /0 is found in the explanations table on page 352.
 It says the reg field of the ModR/M byte is 000.

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 3 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

The ModR/M byte:

 This byte describes the addressing mode of operands.

 It is divided up into 3 fields as follow

 BITS 7 6 5 4 3 2 1 0
 mod reg/opcode r/m

 For this example instruction, bits 5, 4, 3 are set to be 000,
 giving
 BITS 7 6 5 4 3 2 1 0
 mod reg/opcode r/m
 0 0 0

 This tells that the second operand is an immediate.
 The description of the first operand will be done with
 the mode and r/m fields of the ModR/M byte.

 Look in the table (page 353) to find register mode,
 using register EAX (since that is what the example instruction has).
 Table says that Mod is 11, R/M is 000 giving

 BITS 7 6 5 4 3 2 1 0
 mod reg/opcode r/m
 1 1 0 0 0 0 0 0

 The last step is to get the id part. From the explanation
 table (page 352), id is described as 32-bit immediate.
 Therefore id corresponds to a 32-bit two's complement representation
 of the value 24.

 This is 0000 0000 0000 0000 0000 0000 0001 1000
 In hex, this is 0x00000018.

Putting all this stuff together, we get machine code for
the example instruction (add eax, 24)

Note that everything is in hexadecimal.
AND, immediate values are listed least significant byte first!

 opcode
 81
 ModR/M byte
 c0
 immediate
 18
 00
 00
 00

Written out left to right:
 81 c0 18 00 00 00

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 4 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

One more example of generating machine code.

Machine code for the Pentium instruction

 dec dword ptr [EDX]

 From page 349, we want the form of the decrement instruction

 dec r/m ff /1

 The opcode is ff, and it describes that there will be one operand,
 and it is of the general form. The /1 says that the
 Reg field of the ModR/M byte will be 001.

 BITS 7 6 5 4 3 2 1 0
 Mod Reg/Opcode R/M
 0 0 1

 The table on page 353 describes the Mod and R/M fields.
 Find the register direct addressing mode, using register EDX
 in the table. It gives Mod 00 and R/M 010.

 BITS 7 6 5 4 3 2 1 0
 Mod Reg/Opcode R/M
 0 0 0 0 1 0 1 0

 In hex, this is 0a.

 The machine code is now complete: ff 0a.

A BIG EXAMPLE:

 .data
a1 dd 4
a2 dd ?
a3 dd 5 dup(0)

 .code
main: mov ecx, 20
 mov eax, 15
 mov edx, 0
 jz target_label
loop1: add edx, eax
 imul [ebp + 8]
 dec ecx
 jg loop1
target_label:
 done

First step: putting the data section together.

Upon scanning the source code, the token .data is read.

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 5 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

This is the directive that tells the assembler that what follows
gets allocated within the data section of the program.

 Remember that a directive is a "command" to the assembler
 about how to assemble the source code.

The next token encountered is the label a1.

This symbol (label) is not yet in its symbol table, so the
assembler assigns an address, and places it in the symbol
table.

 Remember, the assembler assigns the first available address
 within the data section.

 Symbol table
 symbol address

 a1 0040 0000 (I made up this address, 'cuz we need
 a starting address for the data section.)

The next token is dd. It lets the assembler know to allocate
one doubleword of space at the current address.

The next token is 4. It tells the assembler that the value of
the allocated space is to be the value 4.

The following line does much the same,
 placing a2 in the symbol table at the next available address
 (0x0040 0004)
 allocating 1 doubleword
 not putting something specific in the allocated space

When finished with the data section, we will have the

 symbol table
 symbol address

 a1 0040 0000
 a2 0040 0004
 a3 0040 0008
 0040 000c
 0040 0010
 0040 0014
 0040 0018

 0040 001c (the next available address within the
 data section. NOT PART OF THE TABLE.)

and,

 memory map of data section
address contents notes
 hex
0040 0000 0000 0004 for a1
0040 0004 0000 0000 for a2 (defaults to 0)
0040 0008 0000 0000 5 double words for a3
0040 000c 0000 0000

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 6 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

0040 0010 0000 0000
0040 0014 0000 0000
0040 0018 0000 0000

Upon encounting the .code directive, the assembler knows that
the next addresses it assigns will be within the code section
of the program (separate from the data).

Assume that the code will be assembled such that the first
instruction is placed at address 0x0000 0000.

The code (repeated):
 .code
main: mov ecx, 20
 mov eax, 15
 mov eax, 0
 jz target_label
loop1: add edx, eax
 imul [ebp + 8]
 dec ecx
 jg loop1
target_label:
 done

The first token picked up after the .code directive
is the label main. (As with ALL symbols,) the assembler
looks to see if this symbol is already in the symbol table.
It is not, so the assembler assigns the first available
address, and places it in the symbol table.

 symbol table
 symbol address

 a1 0040 0000
 a2 0040 0004
 a3 0040 0008
 0040 000c
 0040 0010
 0040 0014
 0040 0018

 0040 001c (the next available address within the
 data section. NOT PART OF THE TABLE.)
 main 0000 0000

Next, the assembler picks up the token mov. It knows that
this is an instruction, and reads the rest of the instruction
in order to generate the machine code for this instruction.

 mov ecx, 20

 mov reg, immed b8 + rd

 No ModR/M byte needed, since the register is incorporated
 into the opcode byte, and the immediate must follow.

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 7 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

 rd (from table on page 352) is 1, b8+1=b9

 The immediate is 0x00000014.

 So, the machine code will be
 b9 14 00 00 00

 These 5 bytes are placed at address 0x0000 0000, and
 the next available address for an instruction becomes
 0x0000 0005.

The assembler is ready for the next token. It will be the
second mov instruction in the program. It knows that
this is an instruction, and reads the rest of the instruction
in order to generate the machine code for this instruction.

 mov eax, 15

 mov reg, immed b8 + rd

 No ModR/M byte needed, since the register is incorporated
 into the opcode byte, and the immediate must follow.

 rd (from table on page 352) is 0, b8+0=b8

 The immediate is 0x0000000f.

 So, the machine code will be
 b8 10 00 00 00

 These 5 bytes are placed at address 0x0000 0005, and
 the next available address for an instruction becomes
 0x0000 000a.

The assembler is ready for the next token. It will be the
third mov instruction in the program. It knows that
this is an instruction, and reads the rest of the instruction
in order to generate the machine code for this instruction.

 mov edx, 0

 mov reg, immed b8 + rd

 No ModR/M byte needed, since the register is incorporated
 into the opcode byte, and the immediate must follow.

 rd (from table on page 352) is 2, b8+2=ba

 The immediate is 0x00000000.

 So, the machine code will be
 ba 00 00 00 00

 These 5 bytes are placed at address 0x0000 000a, and
 the next available address for an instruction becomes
 0x0000 000f.

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 8 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

The assembler is ready for the next token. It will be the
jz instruction in the program. It knows that
this is an instruction, and reads the rest of the instruction
in order to generate the machine code for this instruction.

 jz target_label

 jz rel32 0f 84 "cd"

 The "cd" is a 32-bit code offset. It needs to be the
 difference between what the PC will be when executing this
 code and the address assigned for label target_label.

 The problem with this is that target_label has not yet
 been assigned an address. So, the assembler will need to
 wait on figuring out the 32-bit code offset portion of
 this instruction until the second pass of the assembler.

 The assembler does know that this instruction will be
 exactly 6 bytes long, so it can continue with assembly
 at location 0x0000 0015.

A memory map of text section so far is:

 memory map of text section
address contents

0000 0000 b9 14 00 00 00
0000 0005 b8 0f 00 00 00
0000 000a ba 00 00 00 00
0000 000f 0f 84 ?? ?? ?? ??
0000 0015

The assembler is ready for the next token. It will be the
label loop1. The assembler checks if this symbol is in the
symbol table. It is not, so the assembler assigns an address
and places the symbol in the table.

 symbol table
 symbol address

 a1 0040 0000
 a2 0040 0004
 a3 0040 0008
 0040 000c
 0040 0010
 0040 0014
 0040 0018

 0040 001c (the next available address within the
 data section. NOT PART OF THE TABLE.)
 main 0000 0000
 loop1 0000 0015

The assembler is ready for the next token. It will be the

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 9 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

add instruction in the program. It knows that
this is an instruction, and reads the rest of the instruction
in order to generate the machine code for this instruction.

 add edx, eax

 add reg, r/m 03 /r
 or
 add r/m, reg 01 /r

 I doesn't matter which one is chosen. They are the
 same length. Chose the first one.

 /r means that the ModR/M byte has both a register
 operand and a R/M operand.

 BITS 7 6 5 4 3 2 1 0
 Mod Reg/Opcode R/M
 1 1 0 1 0 0 0 0

 In hex, this is d0.

 So, the machine code for the instruction is 03 d0.
 These 2 bytes are placed at address 0x0000 0015.
 The next available address for code will be 0x0000 0017.

A memory map of text section so far is:

 memory map of text section
address contents

0000 0000 b9 14 00 00 00
0000 0005 b8 0f 00 00 00
0000 000a ba 00 00 00 00
0000 000f 0f 84 ?? ?? ?? ??
0000 0015 03 d0
0000 0017

On to the next instruction.

 imul [ebp + 8]

 imul r/m f7 /5

 /5 means that the ModR/M byte has a register
 field of 101

 The addressing mode for [ebp + 8] is under disp32[EBP]
 in the table on page 353.

 BITS 7 6 5 4 3 2 1 0
 Mod Reg/Opcode R/M
 1 0 1 0 1 1 0 1

 In hex, this is ad.

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 10 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

 The 32-bit displacement follows the ModR/M byte. It contains
 a 32-bit 2's complement encoding of the value 8.
 0x 00 00 00 08

 The machine code for this instruction is f7 ad 08 00 00 00.
 These 6 bytes are placed at address 0x0000 0017.
 The next available address for code will be 0x0000 0019.

A memory map of text section so far is:

 memory map of code section
address contents

0000 0000 b9 14 00 00 00
0000 0005 b8 10 00 00 00
0000 000a ba 00 00 00 00
0000 000f 0f 84 ?? ?? ?? ??
0000 0015 03 d0
0000 0017 f7 ad 08 00 00 00
0000 001d

The next instruction is easy.

 dec ecx

 dec reg 48 + rd

 rd is 1 for ecx. So the machine code is the single byte 49.

 memory map of code section
address contents

0000 0000 b9 14 00 00 00
0000 0005 b8 10 00 00 00
0000 000a ba 00 00 00 00
0000 000f 0f 84 ?? ?? ?? ??
0000 0015 03 d0
0000 0017 f7 ad 08 00 00 00
0000 001d 49
0000 001e

The decrement instruction is followed by

 jg loop1

 jg rel32 0f 8f "cd"

 Like the other control instruction:
 the "cd" is a 32-bit code offset. It needs to be the
 difference between what the PC will be when executing this
 code and the address assigned for label target_label.

 The assembler does know that this instruction will be
 exactly 6 bytes long.

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 11 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

 To calculate "cd",

 at execution time (for taken control instruction):
 contents of PC + offset field --> PC

 PC points to instruction after the control instruction
 when offset is added.

 at assembly time:

 byte offset = target addr - (addr of instruction after conditional
 control instr addr)

 = addr loop1 - (6 + 0x0000 001e)
 (taken from symbol table)

 = 0x0000 0015 - 0x0000 0024

 Notice that this would be a negative number. That is
 OK -- generate a 32-bit 2's complement value.

 0000 0000 0000 0000 0000 0000 0001 0101
 - 0000 0000 0000 0000 0000 0000 0010 0100
 --
 becomes

 0000 0000 0000 0000 0000 0000 0001 0101
 + 1111 1111 1111 1111 1111 1111 1101 1100
 --
 1111 1111 1111 1111 1111 1111 1111 0001

 in hex 0x ff ff ff f1

 this value is "cd",
 giving the machine code 0f 8f f1 ff ff ff
 (Remember that the least significant byte comes first.)

 Again,
 memory map of code section (so far)
address contents

0000 0000 b9 14 00 00 00
0000 0005 b8 10 00 00 00
0000 000a ba 00 00 00 00
0000 000f 0f 84 ?? ?? ?? ??
0000 0015 03 d0
0000 0017 f7 ad 80 00 00 00
0000 001d 49
0000 001e 0f 8f f1 ff ff ff
0000 0024

The last thing we'll worry about in the table is
the next label: target_addr

It gets placed in the symbol table at the next available

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 12 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

address, 0x0000 0024.

We now have a completed symbol table:
 symbol address

 a1 0040 0000
 a2 0040 0004
 a3 0040 0008
 0040 000c
 0040 0010
 0040 0014
 0040 0018

 0040 001c (the next available address within the
 data section. NOT PART OF THE TABLE.)
 main 0000 0000
 loop1 0000 0015
 target_addr0000 0024

After this first pass of the assembler is done, ALL the
labels have been given addresses.

During this second pass of the assembler, any remaining
code left to be completed is completed. For this example
code fragment, that is the jz instruction at address 0x0000 000f.

All that remains is the offset calculation. It works just like
the calculation for the other control instruction.

 byte offset = target addr - (addr of instruction after conditional
 control instr addr)

 = addr target_addr - (6 + 0x0000 000f)
 (taken from symbol table)

 = 0x0000 0024 - 0x0000 0015

 0000 0000 0000 0000 0000 0000 0010 0100
 - 0000 0000 0000 0000 0000 0000 0001 0101
 --
 0000 0000 0000 0000 0000 0000 0000 1111

Notice that this offset is a positive number. This is ok.
It corresponds to a branch/jump forward in the code.
A negative offset would correspond to a branch/jump backward
within the code.

It is the offset of 0x 0000000f that gets placed into the
machine code.

The completed machine code is

 memory map of text section
address contents

0000 0000 b9 14 00 00 00
0000 0005 b8 10 00 00 00

11/02/22 11:34Lecture notes - Chapter 12 - Assembly

Página 13 de 13http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/assembly.html

0000 000a ba 00 00 00 00
0000 000f 0f 84 0f 00 00 00
0000 0015 03 d0
0000 0017 f7 ad 80 00 00 00
0000 001d 49
0000 001e 0f 8f f1 ff ff ff
0000 0024

